19 research outputs found

    On-line PD detection and localization in cross-bonded HV cable systems

    Get PDF
    This paper addresses the detection and localization of partial discharge (PD) in crossbonded (CB) high voltage (HV) cables. A great deal has been published in recent years on PD based cable insulation condition monitoring, diagnostics and localization in medium voltage (MV) and high voltage (HV) cables. The topic of pulse propagation and PD source localization in CB HV cable systems has yet to be significantly investigated. The main challenge to PD monitoring of CB HV cables is as a result of the interconnectedness of the sheaths of the three single phase cables. The cross-bonding of the sheaths makes it difficult to localize which of the three phases a PD signal has emanated from. Co-axial cables are used to connect cable sheaths to cable link boxes, for ease of installation and protection against moisture. A second challenge is, therefore, the coupling effect when a PD pulse propagates in HV cable joints and the co-axial cables, making PD detection and localization more complex. The paper presents experimental investigations into PD pulse coupling between the cable center conductor and the sheath and the behavior of PD pulse propagation in CB HV cables. It proposes a model to describe PD pulse propagation in a CB HV cable system to allow monitoring and localization, and also presents the knowledge rules required for PD localization in CB HV cable systems

    Partial discharge pulse propagation in power cable and partial discharge monitoring system

    Get PDF
    Partial discharge (PD) based condition monitoring has been widely applied to power cables. However, difficulties in interpretation of measurement results (location and criticality) remain to be tackled. This paper aims to develop further knowledge in PD signal propagation in power cables and attenuation by the PD monitoring system devices to address the localization and criticality issues. As on-line or in-service PD monitoring sensors commonly comprise of a high frequency current transformer (HFCT) and a high-pass filter, the characteristics of detected PD pulses depend on the attenuation of the cable, the HFCT used and the filter applied. Simulation of pulse propagation in a cable and PD monitoring system are performed, based on analyses in the frequency domain using the concept of transfer functions. Results have been verified by laboratory experiments and using on-site PD measurements. The knowledge gained from the research on the change in pulse characteristics propagating in a cable and through a PD detection system can be very useful to PD denoising and for development of a PD localization technique

    Analysis of significant factors on cable failure using the Cox proportional hazard model

    Get PDF
    This paper proposes the use of the Cox proportional hazard model (Cox PHM), a statistical model, for the analysis of early-failure data associated with power cables. The Cox PHM analyses simultaneously a set of covariates and identifies those which have significant effects on the cable failures. In order to demonstrate the appropriateness of the model, relevant historical failure data related to medium voltage (MV, rated at 10 kV) distribution cables and High Voltage (HV, 110 kV and 220 kV) transmission cables have been collected from a regional electricity company in China. Results prove that the model is more robust than the Weibull distribution, in that failure data does not have to be homogeneous. Results also demonstrate that the method can single out a case of poor manufacturing quality with a particular cable joint provider by using a statistical hypothesis test. The proposed approach can potentially help to resolve any legal dispute that may arise between a manufacturer and a network operator, in addition to providing guidance for improving future practice in cable procurement, design, installations and maintenance

    Investigation into pulse sequence analysis of PD features due to electrical tree growth in epoxy resin

    Get PDF
    Electrical trees developed using point-plane samples have been investigated under three different voltage conditions: AC, AC with positive DC bias, and AC with negative DC bias. Visual observations mainly indicate two types of electrical tree progression from initiation to breakdown: “forward and backward” (FB) trees and "forward" (F) trees. FB trees can be observed in AC tests, while F trees occur in AC with DC bias tests. The difference between AC with negative DC bias and AC with positive DC bias is the growth of a rapid long branch prior to breakdown under negative DC bias conditions. Based on the pulse sequence analysis (PSA) technique applied to the PD data associated with electrical tree growth, the findings confirm that PSA curves under different voltage tests have different regions and PSA features can be indicators of tree growth

    Effect of voltage reduction in minimising partial discharge activity in cables - experimental study

    Get PDF
    A common cause of insulation degradation in high voltage (HV) cables is due to partial discharges (PD). PD may be initiated through imperfections and contaminants present in the insulation. It can be hypothesized that a reduction in system voltage can potentially reduce PD, which will correspondingly extend the service life of the cable. Currently, industry voltage statutory requirements permit ±6% tolerance setting on nominal voltage on distribution networks. Such ±6% voltage reduction on may have little or adverse effect on PD magnitude which depends on the nature of defect. Hence the accuracy and type of measuring PD while reducing system voltage is more critical for this application. Power cable as a low pass filter which attenuates and disperse the PD pulses. In this paper effect of voltage reduction on PD is investigated using standard electrode geometries such as point-plane, point-point and point- rod using IEC60270 measurement system together with frequency domain measurements. It has been observed that PD frequency characteristics at different voltages varies in the wideband frequency spectrum

    MV cable lifetime improvement analysis through transformer tap changes

    Get PDF
    Cable life depends mainly on the thermal stress, which relates to the current applied on the cable. Voltage changes in medium voltage (MV) cables due to transformer tap changes will also change the current flowing through the cable, which will change the cable temperature. In order to extend the cable life, this paper aims to simulate and analyse the potential thermal lifetime improvement of cables through long-term tap changes within the statutory levels. Firstly, the IEC standard (60287) method for rating and modelling cables is applied to evaluate the cable temperature under different voltages and relative currents. Different cable configurations will also be considered in simulations as temperature is dependent on the cable dimensions. Then, typical thermal lifetime analytical expressions will be used to evaluate the long-term influence of voltage changes. Lastly, the obtained thermal lifetime assessments under different transformer tap changes and different cable configurations will provide a potential understanding of cable lifetime changes through implementation of permitted regulatory voltage changes

    Quality Control of Metal Additive Manufacturing

    Get PDF
    Metal Additive Manufacturing (AM) is an emerging technology for rapid prototype manufacturing, and the structural integrity of printed structures is extremely important and should meet the specifications and high standards of the above industries. In several metal AM techniques, residual stresses and micro-cracks that occur during the manufacturing procedure can result in irreversible damage and structural failure of the object after its manufacturing. Thus effective quality control of AM is highly required. Most Non-Destructive Testing (NDT) techniques (X-Ray, Computed Tomography, Thermography) are ineffective in detecting residual stresses. Bulk, cost, and resolution are limitations of such technologies. These methods are time consuming both for data acquisition and data analysis and have not yet been successfully integrated into AM technology. However two sets of NDT techniques: Electromagnetic Acoustic Transducers (EMAT) and Eddy Current (EC) Testing, can be applied for residual stress detection for AM techniques. Therefore a crucial and novel extension system incorporation of big data collection from sensors of the both techniques and analysis through machine learning (ML) can estimate the likelihood of the AM techniques to introduce anomalies into the printed structures, which can be used as an on-line monitoring and detection system to control the quality of AM

    Pre-determination of partial discharge inception voltage in power cables using electrode gaps in air under AC voltage

    Get PDF
    The breakdown of insulation in cables while in service can cause considerable damage to equipment and the accessories to which they are connected. PD in cables arises due to the overstressing of cable insulation resulting from electric field enhancement caused by imperfections in cable core and screen. The nature and magnitude of PD activity depends upon the type of defect, aging, environmental factors, applied voltage and cable loading. Reduction in system voltage can potentially reduce PD, which will correspondingly extend the service life of the cable. Currently, industry voltage statutory requirements permit ±6% tolerance setting on nominal voltage on distribution networks. This ±6% voltage reduction on may have little or an adverse effect on PD magnitude depending on the nature of defect present in the cable. Hence there is a clear requirement to pre-determine the PD inception voltage in cables through laboratory experiments to understand the significance of voltage reduction. This means to verify the effect of voltage reduction on extinguishing or minimizing PD activity in cables. In this paper, range of voltages at which PD incepts termed as partial discharge inception voltage(PDIV) is measured using a test cell containing different types of electrode configuration having different spacing. PDIV measured using the test cell is verified by conducting partial discharge testing in paper insulated lead covered (PILC) and cross-linked poly ethylene(XLPE) cables. It has been found that PDIV measured using the test cell and cable are in good agreement
    corecore